(4/z-3)-(24/z^2-9)=1

Simple and best practice solution for (4/z-3)-(24/z^2-9)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/z-3)-(24/z^2-9)=1 equation:


D( z )

z^2 = 0

z = 0

z^2 = 0

z^2 = 0

1*z^2 = 0 // : 1

z^2 = 0

z = 0

z = 0

z = 0

z in (-oo:0) U (0:+oo)

4/z-(24/(z^2))-3+9 = 1 // - 1

4/z-(24/(z^2))-3-1+9 = 0

4/z-24*z^-2-3-1+9 = 0

4*z^-1-24*z^-2+5 = 0

t_1 = z^-1

4*t_1^1-24*t_1^2+5 = 0

4*t_1-24*t_1^2+5 = 0

DELTA = 4^2-(-24*4*5)

DELTA = 496

DELTA > 0

t_1 = (496^(1/2)-4)/(-24*2) or t_1 = (-496^(1/2)-4)/(-24*2)

t_1 = (4*31^(1/2)-4)/(-48) or t_1 = (-4*31^(1/2)-4)/(-48)

t_1 = (4*31^(1/2)-4)/(-48)

z^-1-((4*31^(1/2)-4)/(-48)) = 0

1*z^-1 = (4*31^(1/2)-4)/(-48) // : 1

z^-1 = (4*31^(1/2)-4)/(-48)

-1 < 0

1/(z^1) = (4*31^(1/2)-4)/(-48) // * z^1

1 = ((4*31^(1/2)-4)/(-48))*z^1 // : (4*31^(1/2)-4)/(-48)

-48*(4*31^(1/2)-4)^-1 = z^1

z = -48*(4*31^(1/2)-4)^-1

t_1 = (-4*31^(1/2)-4)/(-48)

z^-1-((-4*31^(1/2)-4)/(-48)) = 0

1*z^-1 = (-4*31^(1/2)-4)/(-48) // : 1

z^-1 = (-4*31^(1/2)-4)/(-48)

-1 < 0

1/(z^1) = (-4*31^(1/2)-4)/(-48) // * z^1

1 = ((-4*31^(1/2)-4)/(-48))*z^1 // : (-4*31^(1/2)-4)/(-48)

-48*(-4*31^(1/2)-4)^-1 = z^1

z = -48*(-4*31^(1/2)-4)^-1

z in { -48*(4*31^(1/2)-4)^-1, -48*(-4*31^(1/2)-4)^-1 }

See similar equations:

| 2x+2x+2=4 | | X^2+y^2-2x+14y+34=0 | | 2x=2x+2+4 | | 2x=2x+4 | | 4+m/3=7/8 | | x+25/x=10 | | 2x+2+4=2x | | -8x-7+2x=23 | | 5x+15=4x+3 | | 29=3r | | 4(-4)-(8+1)=x | | 108=16w | | (7u+4v)(7u-4v)= | | 3-4(5-7)=x | | 61/8-2/3 | | 2x^2-mx-1=0 | | 536,7/1000 | | (x-9)(x-9)=294 | | y+6+12=y+1 | | 5x+40=9x-8 | | 31=2x+2x+3 | | 6=m-6 | | 7x^2+4x+7=0 | | 77.50=2.75x-5 | | (x/4)=(x/3)-2 | | (2a+4)/8=18a+3 | | t=8m+15 | | 2n-2.5=57.57 | | 4x+3+15=5x | | 4x-12=116 | | 24*log(2x)=6 | | 171.78=0.14x+3.78 |

Equations solver categories